4-Aminopyridine derivatives enhance impulse conduction in guinea-pig spinal cord following traumatic injury.

نویسندگان

  • J M McBride
  • D T Smith
  • S R Byrn
  • R B Borgens
  • R Shi
چکیده

4-Aminopyridine (4-AP), a potassium channel blocker, is capable of restoring conduction in the injured spinal cord. However, the maximal tolerated level of 4-AP in humans is 100 times lower than the optimal dose in in vitro animal studies due to its substantially negative side effects. As an initial step toward the goal of identifying alternative potassium channel blockers with a similar ability of enhancing conduction and with fewer side effects, we have synthesized structurally distinct pyridine-based blockers. Using isolated guinea-pig spinal cord white matter and a double sucrose gap recording device, we have found three pyridine derivatives, N-(4-pyridyl)-methyl carbamate (100 microM), N-(4-pyridyl)-ethyl carbamate (100 microM), and N-(4-pyridyl)-tertbutyl (10 microM) can significantly enhance conduction in spinal cord white matter following stretch. Similar to 4-AP, the derivatives did not preferentially enhance conduction based on axonal caliber. Unlike 4-AP, the derivatives did not change the overall electrical responsiveness of axons to multiple stimuli, indicating the axons recruited by the derivatives conducted in a manner similar to healthy axons. These results demonstrate the ability of novel constructs to serve as an alternative to 4-AP for the purpose of reversing conduction deficits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter.

We have demonstrated that 4-aminopyridine-3-methanol (4-AP-3-MeOH), a 4-aminopyridine derivative, significantly restores axonal conduction in stretched spinal cord white-matter strips and shows no preference in restoring large and small axons. This compound is 10 times more potent when compared with 4-AP and other derivatives in restoring axonal conduction. Unlike 4-AP, 4-AP-3-MeOH can restore ...

متن کامل

Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction.

Axonal conduction deficit is a major contributor to various degrees of disability after spinal cord injury. 4-aminopyridine (4-AP), a potassium channel blocker, has been shown to restore some conduction and improve neurological function in both animal and human studies. Using a double sucrose-gap recording device, we have examined the effects of 4-AP on isolated guinea pig spinal cord white mat...

متن کامل

The Effects of 4-aminopyridine on Stretched Mammalian Spinal Cord: Role of Potassium Channel in Axonal Condcution

Axonal conduction deficit is a major contributor to various degrees of disability after spinal cord injury. 4-aminopyridine (4-AP), a potassium channel blocker, has been shown to restore some conduction and improve neurological function in both animal and human studies. Utilizing a double sucrose-gap recording device we have examined the effects of 4-AP on isolated guinea pig spinal cord white ...

متن کامل

Acute repair of crushed guinea pig spinal cord by polyethylene glycol.

Acute repair of crushed guinea pig spinal cord by polyethylene glycol. We have studied the responses of adult guinea pig spinal cord white matter to a standardized compression within a sucrose gap recording chamber. This injury eliminated compound action potential (CAP) conduction through the lesion, followed by little or no recovery of conduction by 1 h postinjury. We tested the ability of pol...

متن کامل

Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol.

Topical application of the hydrophilic polymer polyethylene glycol (PEG) to isolated adult guinea pig spinal cord injuries has been shown to lead to the recovery of both the anatomical integrity of the tissue and the conduction of nerve impulses through the lesion. Furthermore, a brief (2 min) application of the fusogen (M(r) 1800, 50 % w/v aqueous solution) to the exposed spinal cord injury in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 148 1  شماره 

صفحات  -

تاریخ انتشار 2007